skip to main content


Search for: All records

Creators/Authors contains: "Wagner, Helene H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Urbanization is altering landscapes globally at an unprecedented rate. While ecological differences between urban and rural environments often promote phenotypic divergence among populations, it is unclear to what degree these trait differences arise from genetic divergence as opposed to phenotypic plasticity. Furthermore, little is known about how specific landscape elements, such as green corridors, impact genetic divergence in urban environments. We tested the hypotheses that: (1) urbanization, and (2) proximity to an urban green corridor influence genetic divergence in common milkweed (Asclepias syriaca) populations for phenotypic traits. Using seeds from 52 populations along three urban-to-rural subtransects in the Greater Toronto Area, Canada, one of which followed a green corridor, we grew ~ 1000 plants in a common garden setup and measured > 20 ecologically-important traits associated with plant defense/damage, reproduction, and growth over four years. We found significant heritable variation for nine traits within common milkweed populations and weak phenotypic divergence among populations. However, neither urbanization nor an urban green corridor influenced genetic divergence in individual traits or multivariate phenotype. These findings contrast with the expanding literature demonstrating that urbanization promotes rapid evolutionary change and offer preliminary insights into the eco-evolutionary role of green corridors in urban environments.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Summary

    Resolving the consequences of pollinator foraging behaviour for plant mating systems is a fundamental challenge in evolutionary ecology. Pollinators may adopt particular foraging tactics: complete trapline foraging (repeated movements along a fixed route), sample‐and‐shift trapline foraging (a variable route that incorporates information from previous experiences) and territorial foraging (stochastic movements within a restricted area). Studies that integrate these pollinator foraging tactics with plant mating systems are generally lacking.

    We investigate the consequences of particular pollinator foraging tactics forHeliconia tortuosa. We combine parentage and sibship inference analysis with simulation modelling to: estimate mating system parameters; infer the foraging tactic adopted by the pollinators; and quantify the impact of pollinator foraging tactics on mating system parameters.

    We found high outcrossing rates, ubiquitous multiple paternity and a pronounced departure from near‐neighbour mating. We also found that plants repeatedly receive pollen from a series of particular donors. We infer that the pollinators primarily adopt complete trapline foraging and occasionally engage in sample‐and‐shift trapline foraging. This enhances multiple paternity without a substantial increase in near‐neighbour mating.

    The particular pollinator foraging tactics have divergent consequences for multiple paternity and near‐neighbour mating. Thus, pollinator foraging behaviour is an important driver of the ecology and evolution of plant mating systems.

     
    more » « less
  3. Abstract

    Deforestation can impact the quality of pollen received by target plants (i.e. delivery of incompatible pollen, self‐pollen or pollen from closely related individuals). Such reductions in plant mating quality may be direct, when deforestation reduces plant population size and the availability of pollen donors, or indirect, when decreased mating quality results, for example, from shifts in the composition of the pollinator community. As most flowering plants depend on animal pollinators for reproduction, there is a need to understand the direct and indirect links between deforestation, pollinator community composition and plant mating quality.

    We quantified the direct, pollen donor‐mediated and indirect, pollinator‐mediated effects of deforestation on mating quality inHeliconia tortuosa, a tropical herb pollinated by low‐ and high‐mobility hummingbirds. We used a confirmatory path analysis to test the hypothesis that deforestation (amount of forest cover and forest patch size) influenced mating quality (haplotype diversity of pollen pools, outcrossing and biparental inbreeding) directly and indirectly through functional shifts in the composition of pollinator communities (proportion of high‐mobility hummingbirds).

    We found that deforestation triggered functional shifts in the composition of pollinator communities, as the proportion of high‐mobility hummingbirds increased significantly with the amount of forest cover and forest patch size. The composition of the pollinator community affected mating quality, as the haplotype diversity of pollen pools increased significantly with the proportion of high‐mobility hummingbirds, while biparental inbreeding decreased significantly. Although we did not detect any significant direct, pollen donor‐mediated effects of deforestation on mating quality, reductions in the amount of forest cover and forest patch size resulted in functional shifts that filtered out high‐mobility hummingbirds from the pollinator community, thereby reducing mating quality indirectly.

    Synthesis. Deforestation primarily influenced plant mating quality through a cascading effect mediated by functional shifts in the composition of the pollinator community. Our results indicate that plant mating quality strongly depends on the composition of local pollinator communities. Functional shifts that filter out highly mobile and effective pollinators may reduce the transfer of genetically diverse pollen loads from unrelated plants. Such shifts may have pronounced effects on plant population dynamics and disrupt genetic connectivity.

     
    more » « less